Common use of Network Model Clause in Contracts

Network Model. There are “n” drones, where n ≥ 2 as shown in Fig.1. The drones are categorized into either of the two groups: Sensor Drone (S-Drone) and Gateway Drone (G-Drone). Drones from both the groups are placed in the geographical clusters that collectively make up the mission area. Each of the drones, from both G-Drones and S-Drones, are assigned a unique ID. A cluster has fixed number of drones out of which there must be a G-Drone that is linked to the ground station. A drone has following three layers: physical layer (bottom part), data link layer (middle part) and upper layer (top port). The IEEE 802.15.4 (ZigBee) system is installed on Sensor Drones (S- Drones). Gateway Drones (G-Drones) leverage both the radio technologies i.e. IEEE 802.15.4 (ZigBee) and IEEE 802.11a (Wi-Fi). In this way, the features promised by IEEE 802.11a (high-speed data transmission) and IEEE 802.15.4 (low-power consumption) are utilized by the proposed system. The process of network formation kicks off as soon as a drone lifts off. Here, the drones are, supposedly, fed the information about neighbor’s zone ID, location, altitude and speed etc. Further, the information does include the height sensors, IMU, GPS unit and the flight controller etc. The associated drones are interlinked together using the discovery function, which makes use of the beacon signals. Transmission of data between the S-Drones and G-Drones is accomplished using IEEE 802.15.4 at the frequency of 2.4 GHz. On the other hand, the data is routed between G-Drones and the ground station using IEEE 802.11a at the frequency of 5 GHz. An immediate pay off of the scheme is lower computational cost on the ground station since it only retains the information directed to it. Fig.1. Network model

Appears in 2 contracts

Sources: Certificate Based Access Control and Key Agreement Scheme, Certificate Based Access Control and Key Agreement Scheme