Smart Supply Chain Integrated Architecture Sample Clauses

Smart Supply Chain Integrated Architecture. ‌ The integrated architecture of the MIDIH Open Platform for the Smart Supply Chain focuses on providing the mechanisms for managing collaborative supply networks, based mainly on: • Collaboration between OEMs and subcontracts through standardized interfaces; • Global real-time visibility regarding production, inventory, and materials; • Supply chain decision-making through advanced analytics and next generation optimization software, allowing a quick response in supply chain planning’s; • Provide mechanisms for secure data sharing based on digital identity, sharing policy, sharing agreement and data certification. For this, the integrated architecture of the MIDIH Open Platform must support the development and management of inter-company value chains and networks through horizontal integration, digital end-to-end engineering across the entire value chain of both the product and the associated manufacturing system, and the vertical integration of flexible and reconfigurable manufacturing systems within businesses. The following picture (Figure 9) shows the Integrated Architecture of the MIDIH Open Platform for the Smart Supply Chain:
AutoNDA by SimpleDocs

Related to Smart Supply Chain Integrated Architecture

  • Network Interface Device (NID) 2.7.1 The NID is defined as any means of interconnection of end-user customer premises wiring to BellSouth’s distribution plant, such as a cross-connect device used for that purpose. The NID is a single-line termination device or that portion of a multiple-line termination device required to terminate a single line or circuit at the premises. The NID features two independent xxxxxxxx or divisions that separate the service provider’s network from the end user’s customer-premises wiring. Each chamber or division contains the appropriate connection points or posts to which the service provider and the end user each make their connections. The NID provides a protective ground connection and is capable of terminating cables such as twisted pair cable.

  • Network Interconnection Architecture Each Party will plan, design, construct and maintain the facilities within their respective systems as are necessary and proper for the provision of traffic covered by this Agreement. These facilities include but are not limited to, a sufficient number of trunks to the point of interconnection with the tandem company, and sufficient interoffice and interexchange facilities and trunks between its own central offices to adequately handle traffic between all central offices within the service areas at P.01 grade of service or better. The provisioning and engineering of such services and facilities will comply with generally accepted industry methods and practices, and will observe the rules and regulations of the lawfully established tariffs applicable to the services provided.

  • Software Development Software designs, prototypes, and all documentation for the final designs developed under this agreement must be made fully transferable upon direction of NSF. NSF may make the software design, prototype, and documentation for the final design available to competitors for review during any anticipated re-competition of the project.

  • Supply Chain Monitoring A copy of the supply chain monitoring process, which should include details of the process for monitoring the financial viability of the supply chain (including timing), together with any known risks to supply chain stability and material changes to the supply chain. This should include extracts from Board level meetings, risk registers etc where any of the above items have been discussed. Annex 1 1 Information from Contractors who are not required to submit form AR01 to Companies House

  • Configuration Management The Contractor shall maintain a configuration management program, which shall provide for the administrative and functional systems necessary for configuration identification, control, status accounting and reporting, to ensure configuration identity with the UCEU and associated cables produced by the Contractor. The Contractor shall maintain a Contractor approved Configuration Management Plan that complies with ANSI/EIA-649 2011. Notwithstanding ANSI/EIA-649 2011, the Contractor’s configuration management program shall comply with the VLS Configuration Management Plans, TL130-AD-PLN-010-VLS, and shall comply with the following:

  • Purchase Order Flip via Ariba Network (AN) The online process allows suppliers to submit invoices via the AN for catalog and non- catalog goods and services. Contractors have the ability to create an invoice directly from their Inbox in their AN account by simply “flipping” the purchase order into an invoice. This option does not require any special software or technical capabilities. For the purposes of this section, the Contractor warrants and represents that it is authorized and empowered to and hereby grants the State and the third-party provider of MFMP the right and license to use, reproduce, transmit, distribute, and publicly display within the system the information outlined above. In addition, the Contractor warrants and represents that it is authorized and empowered to and hereby grants the State and the third-party provider the right and license to reproduce and display within the system the Contractor’s trademarks, system marks, logos, trade dress, or other branding designation that identifies the products made available by the Contractor under the Contract.

  • Project Management Plan 1 3.4.1 Developer is responsible for all quality assurance and quality control 2 activities necessary to manage the Work, including the Utility Adjustment Work.

  • Design Development Phase Services 3.3.1 Based on the Owner’s approval of the Schematic Design Documents, and on the Owner’s authorization of any adjustments in the Project requirements and the budget for the Cost of the Work, the Architect shall prepare Design Development Documents for the Owner’s approval. The Design Development Documents shall illustrate and describe the development of the approved Schematic Design Documents and shall consist of drawings and other documents including plans, sections, elevations, typical construction details, and diagrammatic layouts of building systems to fix and describe the size and character of the Project as to architectural, structural, mechanical and electrical systems, and other appropriate elements. The Design Development Documents shall also include outline specifications that identify major materials and systems and establish, in general, their quality levels.

  • Architecture The Private Improvements shall have architectural features, detailing, and design elements in accordance with the Project Schematic Drawings. All accessory screening walls or fences, if necessary, shall use similar primary material, color, and detailing as on the Private Improvements.

  • Supervisory Control and Data Acquisition (SCADA) Capability The wind plant shall provide SCADA capability to transmit data and receive instructions from the ISO and/or the Connecting Transmission Owner for the Transmission District to which the wind generating plant will be interconnected, as applicable, to protect system reliability. The Connecting Transmission Owner for the Transmission District to which the wind generating plant will be interconnected and the wind plant Developer shall determine what SCADA information is essential for the proposed wind plant, taking into account the size of the plant and its characteristics, location, and importance in maintaining generation resource adequacy and transmission system reliability in its area.

Time is Money Join Law Insider Premium to draft better contracts faster.